Definition 1. <u>Ray:</u> A <u>ray</u> is a part of a line made up of a point, called the **endpoint**, and all of the points on one side of the endpoint.

Definition 2. <u>Angle:</u> An <u>angle</u> is formed by ROTATING a ray about its endpoint. The angle's *initial side* is the ray's original position. The angle's terminal side is the ray's final position after rotation. The endpoint is called the **vertex** of the angle.

Definition 3. <u>Positive and Negative Angles:</u> The curved arrow drawn near the vertex indicates both the direction and amount of rotation. IF the rotation is counterclockwise, the result is a positive angle. IF the rotation is clockwise, the result is a negative angle.

Definition 4. Coterminal Angles: Angles that have the same initial and terminal sides are called *coterminal angles.*

Definition 5. <u>Standard Position</u>: An angle in a rectangular coordinate is in standard position if its vertex is at the origin and its initial side is the positive x-axis.

Definition 6. Measuring Angels by Using Degrees: A measure of one degree, denoted by 1° is assigned to an angle resulting from a rotation $\frac{1}{360}$ of a complete revolution counterclockwise. An acute angle has measure between 0° and 90°. An obtuse angle has measure between 90° and 180°. A right angle has measure 90°. A straight angle has measure 180°.

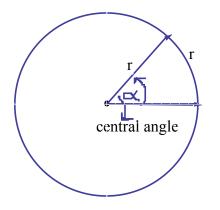
Definition 7. Relationship between Degrees, Minutes and Seconds:

$$1' = \left(\frac{1}{60}\right)^{\circ} \qquad 1^{\circ} = 60' \qquad 1^{\circ} = (3600)''$$
$$1'' = \left(\frac{1}{3600}\right)^{\circ} \qquad 1'' = \left(\frac{1}{60}\right)' \qquad 1' = 60''$$

Example 1. Convert 24°8′15″ to decimal degree notation. <u>Solution:</u>

$$24^{\circ}8'15'' = 24^{\circ} + 8 \times 1' + 15 \times 1''$$
$$= 24^{\circ} + 8(\frac{1}{60})^{\circ} + 15(\frac{1}{3600})^{\circ}$$
$$\approx 24.14^{\circ}$$

Definition 8. <u>Radian Measure:</u> An angle whose center is at the center of a circle is called a central angle. Since the length of arc is equal to the radius then $\alpha = 1$ radian.



Definition 9. Radian Measure of a Central Angle: The radian measure α of a central angle that intercepts an arc of length s on a circle of radius r is given by

$$\alpha = \frac{r}{s}$$
 radians.

Definition 10. Converting between Degrees and Radians: We have the relationship $180^\circ = \pi$ radians.

$$1^{\circ} = \frac{\pi}{180} radians \qquad \qquad \theta^{\circ} = \theta(\frac{\pi}{180}) radians$$
$$1radian = \frac{180}{\pi} degrees \qquad \qquad \theta radians = \theta(\frac{180}{\pi}) degrees$$

Example 2. Convert -225° to radians. Solution:

$$-225^{\circ} = -225^{\circ}(\frac{\pi}{180}) = \frac{-225\pi}{180} = -\frac{5\pi}{4} radians$$

Definition 11. Complements and Supplements Angles: Two positive angles are complements if their sum is 90° . Two positive angles are supplements if their sum is 180° .

Example 3. Find the complement and the supplement of 73° .

<u>Solution</u>: If θ represents the complement of 73°, then 73+ θ = 90; so θ = 17° is the complement of 73°.

If α represents the supplement for 73°, then 73 + α = 180; so α = 107° is the supplement of 73°.

Definition 12. Arc Length Formula: The formula for the length s of the arc intercepted by a central angle with radian measure θ in a circle of radius r is

$$s = r\theta$$
.

Example 4. A circle has a radius of 18 inches. Find the length of the arc intercepted by a central angle with measure 210° .

Solution: We must first convert the central angle measure from degrees to radians. So $\theta = 210^{\circ} = 210(\frac{\pi}{180}) = \frac{7\pi}{6}$. Then

$$s=r\theta=18(\frac{7\pi}{6})=21\pi\approx65.97\,inches$$

Definition 13. Linear and Angular Speed: Suppose an object travels around a circle of radius r. If the object travels through a central angle of θ radians and an arc of length s, in time t, then

- 1. $\nu = \frac{s}{t}$ is the **linear speed** of the object.
- 2. $\omega = \frac{\theta}{t}$ is the angular speed of the object.

Moreover, we can relate the linear speed to the angular speed and write $\nu = r\omega$.

Example 5. A model plane is attached to a swivel so that it flies in a circular path at the end of a 12-foot wire at the rate of 15 revolutions per minute. Find the angular speed and the linear speed of the plane.

Solution: Because angular speed is measure in radians per unit of time, we first convert revolutions per minute into radians per minute. Recall that, $1 \text{ revolution} = 2\pi \text{ radians}$. Then $15 \text{ revolutions} = 15(2\pi) = 30\pi \text{ radians}$. So the **angular speed** is $\omega = 30\pi \text{ radians}$ per minute. The linear speed is given by

$$\nu = r\omega = 12(30\pi) \approx 1131$$
 feet per minute.

Definition 14. <u>Area of a Sector:</u> The area A of a sector of a circle of radius r formed by a central angle with radian measure θ is given by

$$A = \frac{1}{2}r^2\theta.$$

Example 6. How many square inches of pizza have you eaten if you eat a sector of an 18-inchdiameter pizza whose edges form a 30° angle?

Solution: First, we have to convert 30° to radians to use the sector area formula. So $\theta = 30(\frac{\pi}{180}) = \frac{\pi}{6}$. The pizza's radius is $r = \frac{diameter}{2} = \frac{18}{2} = 9$. Hence

$$A = \frac{1}{2}r^{2}\theta$$

= $\frac{1}{2}(9)^{2}(\frac{\pi}{6})$
 $\approx 21 \ square \ inches.$